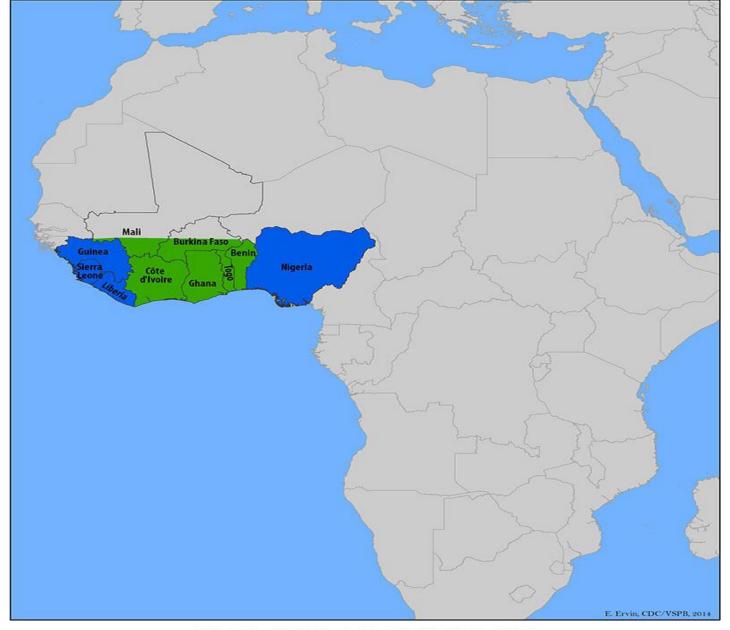
Development of A live attenuated Lassa Fever Vaccine

A multi-Nation Cooperative Project for Local Production

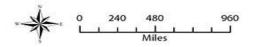

Abdulsalami Nasidi, Maria Salvato, Anton Katlinsky, Dmitry Moshkoff

Presented at AVMI meeting in Freetown, Sierra Leone 24th September 2018

THE EPIDEMIC

Arena Virus causing infection

Virus	Disease					
Lassa virus	Lassa fever					
Junin virus	Argentine hemorrhagic fever					
Machupo virus	Bolivian hemorrhagic fever					
Guanarito virus	Venezuelan hemorrhagic fever					
Sabia	Brazilian hemorrhagic fever					



LASSA FEVER DISTRIBUTION MAP

Countries reporting endemic disease and substantial outbreaks of Lassa Fever

Countries reporting few cases, periodic isolation of virus, or serologic evidence of Lassa virus infection

Lassa Fever status unknown

Demographic Info.

at riskthose who live in areas with Mastomys rodents

Lassa carrier, Mastomys Nataliensis

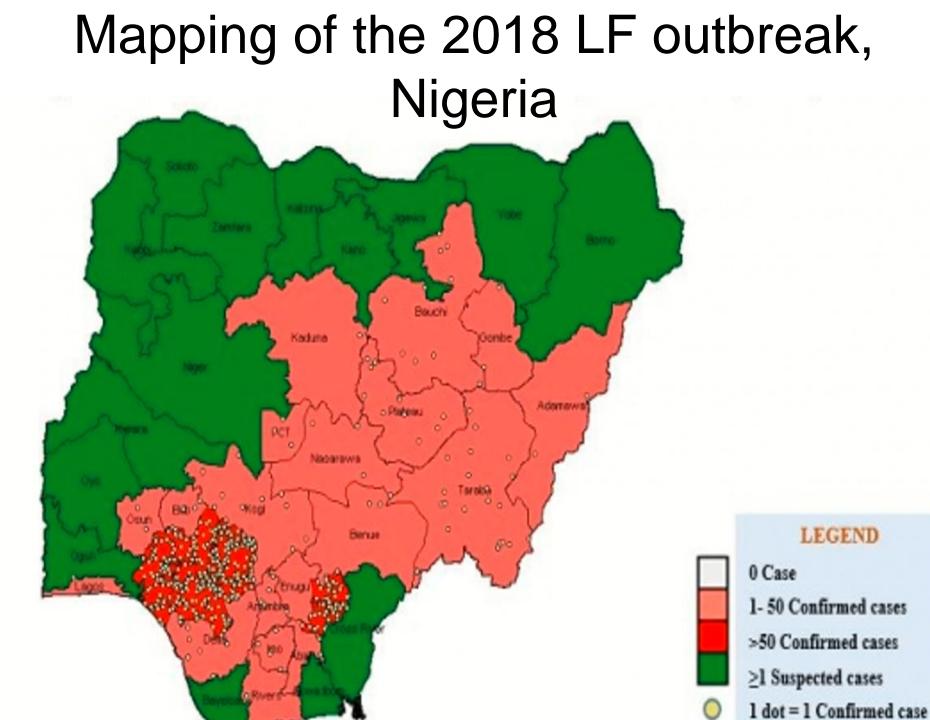
LASSA FEVER IN NIGERIA

History of Lassa Fever Disease

(Modified from a map by Daniel Dalet that is freely available at <u>http://d-maps.com</u>.)

Current outbreak in Nigeria

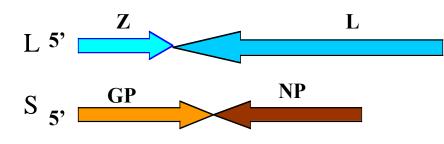
- From 1st January to 16th September 2018, a total of 2559 suspectedi cases have been reported from 22 states. Of these, 506 were confirmed positive, 10 probable, 2044 negative (not a case)
- Since the onset of the 2018 outbreak, there have been 133 deaths in confirmed cases
- Case Fatality Rate in confirmed cases is 26.3%

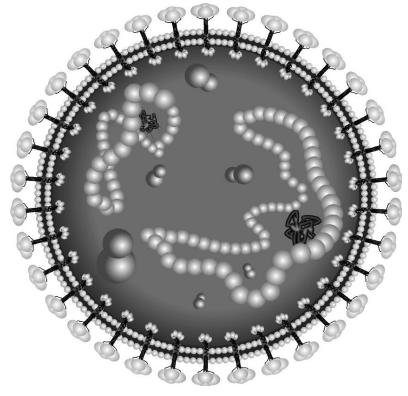

Number of HCW affected

- Thirty-nine health care workers have been affected since the onset of the outbreak in Seven States –Ebonyi (16), Edo (14), Ondo (4), Kogi (2), Nasarawa (1), Taraba (1) and Abia (1) with ten deaths in Ebonyi (6), Kogi (1), Abia (1), Ondo (1) and Edo (1)
- 82% of all confirmed cases are from Edo (46%), Ondo (23%) and Ebonyi (13%) states

Lassa Fever: Delta confirms death, says no cause for alarm

- Last weel the Delta Ministry of Health has confirmed the death of a woman who allegedly manifested symptoms of Lassa fever virus.
- The woman, who is now deceased, had most probably transmitted the infection to 2-HCW who treated her. They, the two patients are currently under medical care and they are responding to treatment, pending the outcome of the test," Okoba said.

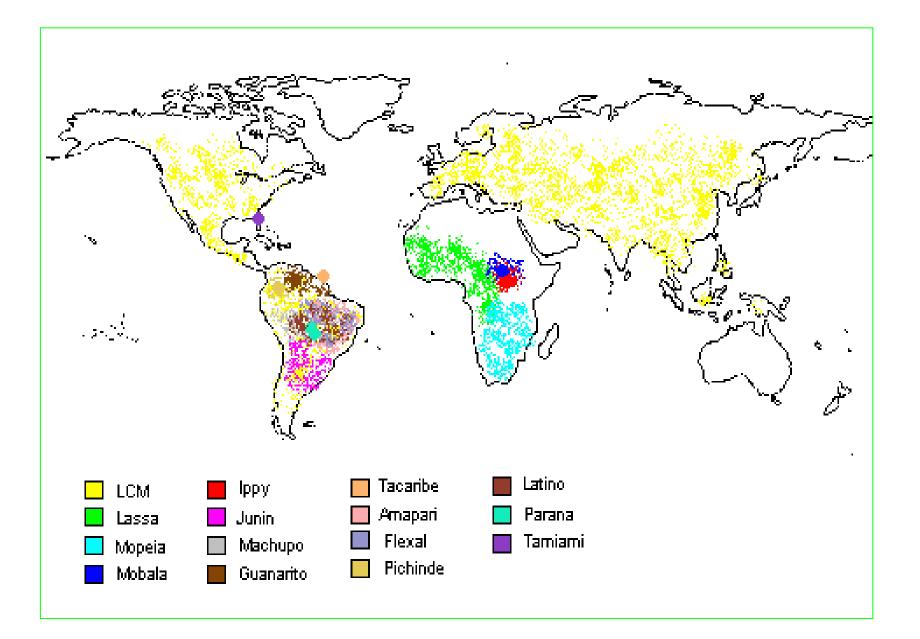


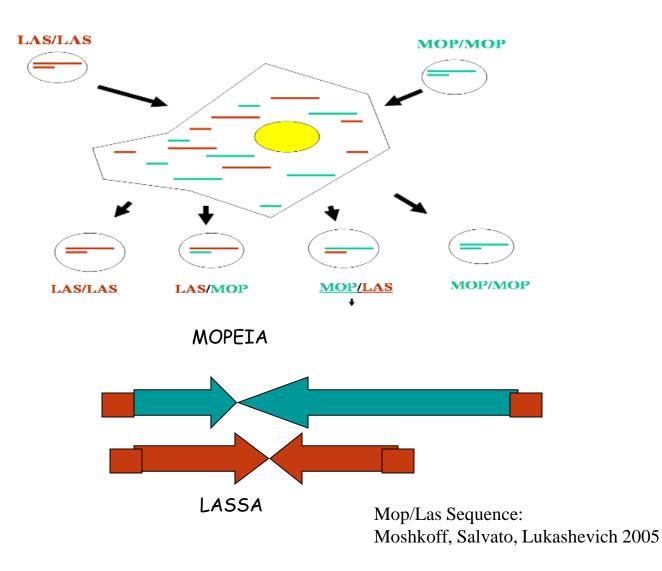

THE VIRUS

Lassa Virus Structure

Family: Arenaviridae, now in the order Bunyavirales

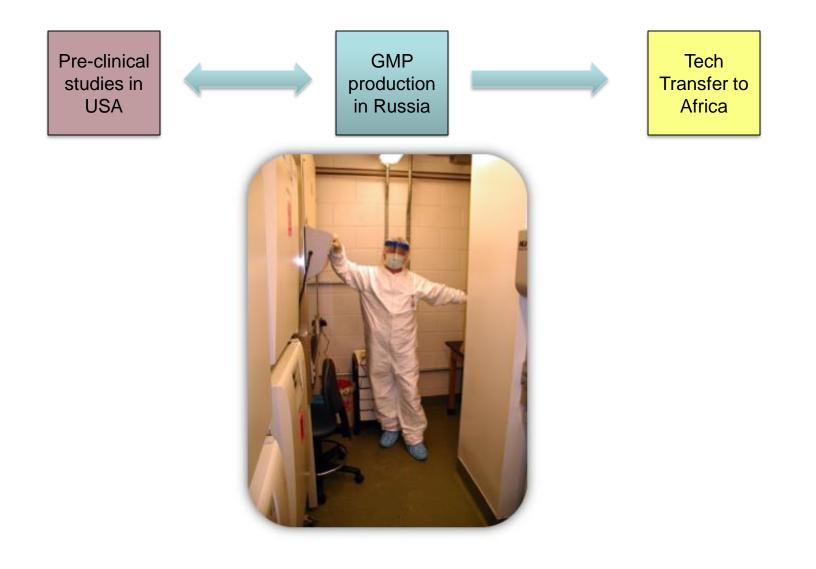
Two ambisense genome segments



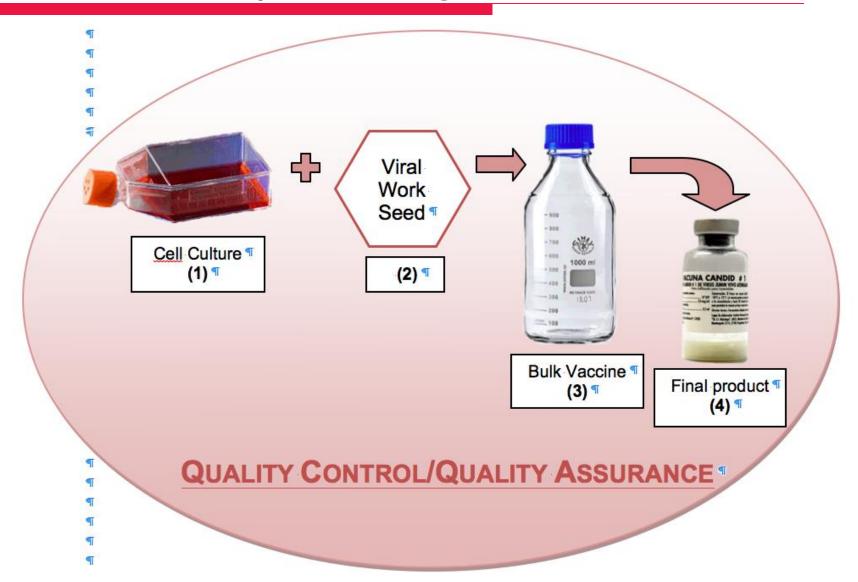

Lassa virus causes up to 300,000 annual infections in West Africa and ~3,000 deaths per year.

➢ Mopeia virus is a close relative of Lassa virus, found in South-Eastern Africa where it does not cause disease. In contrast to Lassa, Mopeia virus is not lethal in guinea pigs and monkeys, and can protect them from LAS challenge, like a natural vaccine.

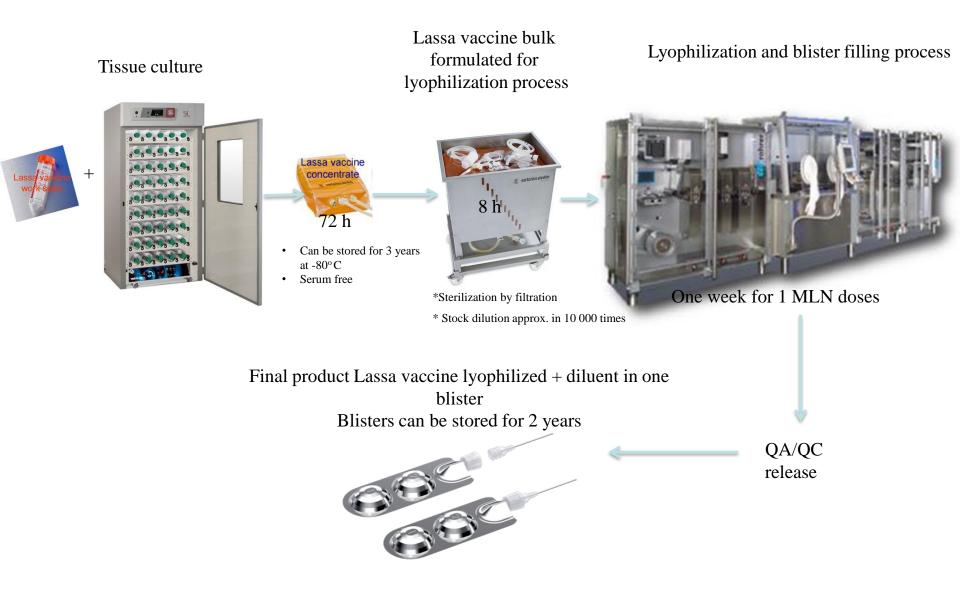
Co-infection of cells with both viruses can produce Mop/Las reassortants.



Reassortment between Lassa and Mopeia Viruses



THE VACCINE


Strategy for vaccine production:

Process for making AHF vaccine:

Steps in producing Lassa Hemorrhagic fever reassortant liveattenuated Vaccine

Facility for making AHF vaccine:

Ana María Ambrosio et al.

Cell culture washing and viral inoculation during the manufacture of Candid #1 bulk vaccine

Clinical Trials

Strategy for vaccine clinical trials:

- Lassa fever is a recurring epidemic, appearing every year during the November to February dry season., fast becoming endemic in many communities of WA
- Nigeria has recently been recognized as the richest African country with many natural resources and a dynamic economy.
- According to reviews and discussion with WHO (Jan'18) the Mop/Las vaccine is the most broadly cross-protective Lassa vaccine available.
- Because Lassa disease is Endemic, recurs annually and because Nigeria can now afford better medicine, it is important to organize proper placebo-controlled clinical trials. Ring vaccinations cannot be the only approach.

Preclinical evaluation of the safety and immunogenicity of a Mop/Las vaccine candidate

FDA "Two Animal Rule" (21 CFR 314.600 & 21 CFR 601.90)

The FDA can approve drugs that are shown to be effective *in two animal* **models**, without clinical trials for effectiveness, under the following conditions:

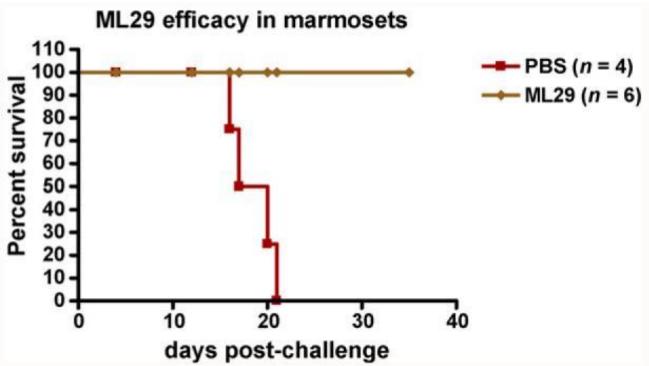
- Human efficacy trials are not feasible or ethical
- Efficacy is shown in well understood animal models
- Efficacy is substantiated in multiple species
- Human clinical data on safety, toxicity, and immunogenicity is still required

Diseases that may be affected by the animal rule include:

- Anthrax
- Botulism
 - Plague
- Smallpox
- Tularemia

Viral hemorrhagic fevers

Animal Group	Challenged virus	Dose, PFU	Vacc/chal interval, days ª	No. survived/ No. infected	Survival, %	Day of death	
No vaccination	1						
1.	LASV-Jo	10e+1	na <u>b</u>	0/4	0	15-17	
2.	LASV-Jo	10e+3	na	0/5	0	15-16	
3.	LASV-803213	10e+3	na	0/5	0	13-15	
4.	LCMV-WE	10e+3	na	0/5	0	13-14	
The MK18 co	nventional vaccination	n (challenge o	on day 30)				
5. 10e+2	no challenge	na	na	6/6	100	na	
6. 10e+6	no challenge	na	na	6/6	100	na	
7. 10e+3	LASV-Jo	10e+3	30	6/6	100	na	
8. 10e+3	LASV-803213	10e+3	30	5/5	100	na	
9. 10e+3	LCMV-WE	10e+3	30	0/6	0	16-21	
The simultane	eous vaccination/challe	enge experim	ents (challenge on day	0 and 2)			
10a.10e+6	LASV-Jo	10e+1	0	5/5	100	na	
10b.10e+6	LASV-Jo	10e+1	2	3/5	60	10 <u>°</u> , 15	
11a.10e+6	LASV-Jo	10e+3	0	4/4	100	na	
11b.10e+6	LASV-Jo	10e+3	2	4/5	80	10 <u>c</u>	
12a.10e+2	LASV-Jo	10e+3	0	3/4	75	14	
12 5.10e+2	LASV-Jo	10e+3	2	3/4	75	> 16	
13. 10e+6	LASV-803213	10e+3	0	3/5	60	12, 17	
14. 10e+6	LCMV-WE	10e+3	0	0/5	0	14-16	

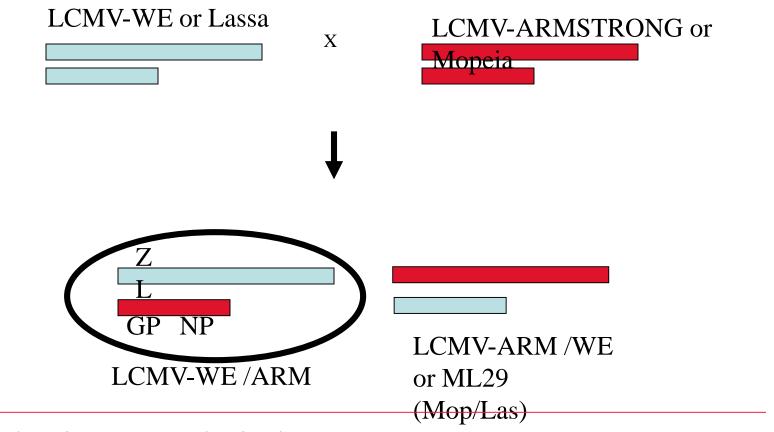

^aAnimals were s. c. vaccinated with the Mop/Las reassortant (day 0) and challenged simultaneously on day 0, 2, 30 after vaccination. Death or survival past 21 days was set up as an endpoint. Amino acid difference between LASV-Jo and LASV-803213 is the highest within LASV genetic lineages I-IV.

^bNon applicable.

^cNon-LASV-specific death (inappropriate anesthesia).

Mop/Las Vaccination of Marmosets

•Six animals were s.c. vaccinated with Mop/Las (low dose).


•Four animals were injected with PBS (control).

•On day 30 all animals were challenged with LASV-Josiah (1 \times 103 PFU in 0.5 ml).

•During 17–21 days after LASV challenge animals from the control group met euthanasia criteria and were sacrificied.

•Vaccinated animals had no clinical manifestations of disease and were necropsied at the end of the experiment, on day 35 after LASV challenge

Reassortment analysis

Virulence determinants were found on the L RNA

Viability of project

Assessment of the Lassa vaccine market in West Africa

Country	Population	Birthrate coefficient (Births per 1,000 population)	Birthrate	25 000 000 - 20 000 000 -	38,5	38,5						
Nigeria*	103 127 784	39,9	4 114 799	a								
Ghana	27 414 000	29,6	811 454	ອີ 15 000 000 -								
Ivory Coast	23 126 000	35,3	816 348									
Guinea	10 935 000	39,8	435 213	- 000 000 -								
Benin	10 782 000	40,2	433 436	ę			36,6	36,6	36.6	36.6	36,6	36.6
Тодо	7 065 000	36,8	259 992	5 000 000 -			50,0	50,0	50,0	50,0	50,0	50,0
Sierra Leone	<u>6 513 000</u>	46,2	300 901									
Liberia	4 046 000	49,6	200 682	o +-				-	1		,	
Total population	193 008 784	38,2	7 372 824		1	2	3	4	5	6	7	8
*-Population christians (form Scenario: gradual incre		n Nigeria)				 p	vrice perd	ose, USD 🔍	total			
year	1	2	3	4		5		6		7	'	8
coverage												
children population	20%	40%	80%	80%		80%		80% 80%		%	80%	
pregnant women	20%	40%	80%	80%		80%		80%		80%		80%
adult population	5%	5%	5%	5%		5%	5% 6%		6%		6%	
total*	<mark>6</mark> %	8%	11%	11%		11%		11%		11%		11%
demand, doses												
children population	1 474 565	2 949 130	5 898 260	5 898 260)	58	898 260 5 898 260		5 898 260		5 898 260	
pregnant women	1 474 565	2 949 130	5 898 260	5 898 260)	5 898 260 5 898 260		5 898 260		5 898 260		
adult population	8 913 157	9 091 420	9 273 248	9 458 713	9 647 888		9	9 840 845	45 10 037 662		10 238 415	
total	11 862 287	14 989 679	21 069 767	21 255 232		21 4	44 407 21 637 364		21 834 181		22 034 934	
price per dose, USD	38,5	38,5	36,6	36,6	36,6 36,6		36,6		36,6			
value, USD												
children population	56 770 748	113 541 495	215 728 841	215 728 841		215 7	28 841	215	5 728 841	21	5 728 841	215 728 841
pregnant women	56 770 748	113 541 495	215 728 841	215 728 841		215 7	28 841	215	5 728 841	21	5 728 841	215 728 841
adult population	343 156 535	350 019 666	339 169 056	345 952 438		352 8	71 486	359	928 916	36	7 127 494	374 470 044
total	456 698 031	577 102 657	770 626 739	777 410 120)	784 3	29 169	79:	1 386 599	79	8 585 177	805 927 727

*-WHO Position: it is important to vaccinate most (80 % or more) of the population at risk to prevent transmission in a region with a fever outbreak.

Please note that Nigerias current population is put at 197,000,000 and West African region is well above 500,000

CEPI criteria for Lassa Vaccine

- 1. Cheap to produce
- 2. Product Characterized for FDA approved IND.
 - Chemistry, manufacturing, and controls (CMC) issues in IND applications
- 3. Broad Cross-protection
- 4. Capable of rapid or even post-challenge protection.
- 5. Clear Immune correlates of protection
 - For short-term protection
 - For long-term protection
- 6. Safe in immune-suppressed people
- 7. Shelf-life at least a year at room temp.
- 8. Adaptable to local production

Conclusions about the vaccine:

- Sequence of the Mop/Las vaccine has been published (Moskoff et al 2006)
- Guinea pigs vaccinated with a Mop/Las vaccine experienced sterilizing immunity and complete protection with homologous virus and with the heterologous Nigerian isolate
- According to reviews and discussion with WHO (Jan'18) the Mop/Las vaccine is the most broadly cross-protective Lassa vaccine available.
- Simultaneous immunization-challenge or challenge 2 days before immunization also protected 60-100% of the animals against both Lassa strains
- The vaccination elicits specific immune responses and completely protects Guinea pigs and Marmosets from fatal disease by induction of sterilizing cell-mediated immunity
- This vaccine elicits immune responses in SIV-infected monkeys and does not negatively impact their lifespan (Zapata et al 2013)
- > The Mop/Las reassortant (MK18) is a promising vaccine candidate for Lassa fever

Conclusion:

➤Our goals to advance the Mop/Las (MK18) vaccine and transfer technology to Nigeria are in line with the WHO Roadmap for Lassa Fever.

The WHO task force named the Mop/Las vaccine as one of 3 top vaccine candidates

> The WHO task force recognized the Mop/Las vaccine as the most broadly cross-protective vaccine.

Acknowledgments

IHV Maria Salvato Juan C. Zapata Mahmoud Djavani Dmitry Moshkoff Marco Goicochea Igor S. Lukashevich

Dave Pauza Bhawna Poonia Cristiana Cairo

Joe Bryant and Harry Davis

VBI Yan Zhang Oswald Crasta Bruno Sobral

SFBR Jean Patterson Ricardo Carrion Kathy Brasky Keith Mansfield (Harvard)

FUNDING

UMD funding for macaque studies

NIH for rhesus macaque and BSL-4 vaccine studies

NIH-MidAtlantic RCE for Marmoset studies & bioinformatics

FACILITIES

IHV BSL-3 facility and SFBR (Texas) BSL-4

The End